Add like
Add dislike
Add to saved papers

Single-molecule DREEM imaging reveals DNA wrapping around human mitochondrial single-stranded DNA binding protein.

Nucleic Acids Research 2018 September 27
Improper maintenance of the mitochondrial genome progressively disrupts cellular respiration and causes severe metabolic disorders commonly termed mitochondrial diseases. Mitochondrial single-stranded DNA binding protein (mtSSB) is an essential component of the mtDNA replication machinery. We utilized single-molecule methods to examine the modes by which human mtSSB binds DNA to help define protein interactions at the mtDNA replication fork. Direct visualization of individual mtSSB molecules by atomic force microscopy (AFM) revealed a random distribution of mtSSB tetramers bound to extended regions of single-stranded DNA (ssDNA), strongly suggesting non-cooperative binding by mtSSB. Selective binding to ssDNA was confirmed by AFM imaging of individual mtSSB tetramers bound to gapped plasmid DNA substrates bearing defined single-stranded regions. Shortening of the contour length of gapped DNA upon binding mtSSB was attributed to DNA wrapping around mtSSB. Tracing the DNA path in mtSSB-ssDNA complexes with Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy established a predominant binding mode with one DNA strand winding once around each mtSSB tetramer at physiological salt conditions. Single-molecule imaging suggests mtSSB may not saturate or fully protect single-stranded replication intermediates during mtDNA synthesis, leaving the mitochondrial genome vulnerable to chemical mutagenesis, deletions driven by primer relocation or other actions consistent with clinically observed deletion biases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app