Add like
Add dislike
Add to saved papers

CEST-MRI for glioma pH quantification in mouse model: Validation by immunohistochemistry.

NMR in Biomedicine 2018 November
In glioma, the acidification of the extracellular tumor microenvironment drives proliferation, angiogenesis, immunosuppression, invasion and chemoresistance. Therefore, quantification of glioma extracellular pH (pHe) is of crucial importance. This study is focused on the application of the YbHPDO3A (ytterbium 1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane) probe for in vivo glioma pHe quantification using chemical exchange saturation transfer (CEST)-MRI and its correlation with tumor metabolism assessed by immunohistochemistry. The U87 glioma mouse model was used (n = 18) and MRI performed at 4.7 T. CEST-MRI of YbHPDO3A solutions at different pH values showed two resolved CEST spectra at 71 ppm and 99 ppm, both sensitive to pH variations, allowing therefore calculation of the ratiometric curve for in vivo pH quantification. In vivo MRI sequences consisted of T2w for tumor localization, T2w * to assess YbHPDO3A biodistribution by exploiting its magnetic susceptibility effect and CEST for glioma pHe mapping. T2w * images show that YbHPDO3A extravasates in tumor in regions with damaged blood-brain barrier. The pHe is calculated only in these regions. Hematoxylin/eosin histology and Ki-67, CA-IX (carbonic anhydrase 9) and NHE-1 immunohistochemical staining were performed; their expression rates were compared with the in vivo pHe values. On the basis of the cell proliferation marker Ki-67, two groups were defined: one group with a lower mitotic index (MI% < 20% = mean value) and a mean pHe value of 7.00 (low-proliferation/high-pH group) and the other with MI% > 20% and an acidic pHe of 6.6 (high-proliferation/low-pH group). CA-IX and NHE-1 were over-expressed in the high-proliferation/low-pH group (CA-IX, 92 ± 7% versus 30 ± 13%; NHE-1, 84 ± 8% versus 35 ± 11%), indicating an acidic/hypoxic microenvironment. These immunohistochemical results are consistent with our pHe mapping (Pearson correlation coefficient > 0.70) and provide evidence for the feasibility of the CEST-MRI method with the YbHPDO3A probe for glioma pHe quantification at 4.7 T. Importantly, the YbHPDO3A probe has similar chemical and biological properties to the clinically approved MRI contrast agent GdHPDO3A. This makes the method promising for a clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app