Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of complement 3 in the salt-sensitive hypertension by activation of renal renin-angiotensin system in spontaneously hypertensive rats.

We previously showed that complement 3 (C3) is highly expressed in mesenchymal tissues in spontaneously hypertensive rats (SHR). We targeted C3 gene by zinc-finger nuclease (ZFN) gene-editing technology and investigated blood pressure and phenotype in SHR. Blood pressure was measured by tail-cuff and telemetry methods. Histology and expression of liver X receptor α (LXRα), renin, Krüppel-like factor 5 (KLF5), and E-cadherin were evaluated in kidneys. Mesangial cells (MCs) were removed from glomeruli from three strains, and we evaluated the phenotype in vitro. SHR showed the salt-sensitive hypertension that was abolished in C3 knockout (KO) SHR. Proliferation of MCs from SHR was higher than that from Wistar-Kyoto (WKY) rats and showed a synthetic phenotype. Renal injury scores were higher in SHR than in WKY rats and C3 KO SHR. Expression of E-cadherin was lower, and expression of renin was higher in the nephrotubulus from SHR than WKY rats and C3 KO SHR. Expression of C3 α-chain protein and α-smooth muscle actin protein was significantly higher in renal medulla from SHR than from WKY rats. Expression of angiotensinogen, LXRα, renin, and KLF5 mRNA was increased in kidney from SHR compared with C3 KO SHR. Intrarenal angiotensin II levels were significantly higher in kidney from SHR than WKY rats and C3 KO SHR. Urinary epinephrine and norepinephrine excretions were significantly higher in SHR than in WKY rats and C3 KO SHR. These findings showed that increased C3 induces salt-sensitive hypertension with increases in urinary catecholamine excretion and intrarenal activation of the renin-angiotensin system by the dedifferentiation of mesenchymal tissues in kidney from SHR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app