Journal Article
Review
Add like
Add dislike
Add to saved papers

Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury.

Prompt myocardial reperfusion during acute myocardial infarction by fibrinolytic therapy, percutaneous coronary intervention, or coronary artery bypass grafting limits the affected area and improves prognosis. However, reperfusion itself can cause cardiomyocyte damage and decrease treatment efficacy. No treatments that effectively prevent myocardial ischemia/reperfusion (I/R) injury are currently available, and are therefore the focus of ongoing research. Salvianolic acid A (SAA), the active ingredient of the traditional Chinese herbal remedy Salvia miltiorrhiza, has anti-thrombotic activity, anti-inflammatory, and anti-cancer activity; regulates blood lipids and provides hepatic and neural protection. Recent studies demonstrated that SAA inhibits cardiomyocyte apoptosis in response to I/R by the PI3K/Akt, GSK-3β, JNK, and ERK1/2 pathways, and by JNK-ERK1/2 crosstalk. The mechanisms for SAA attenuating cardiomyocytes apoptosis during I/R injury through the P38 MAPK, caspase, JAK/STAT, NF-κB and LOX-1 signaling pathways need further illustration. There may be potential crosstalks between PI3K/Akt and JNK, and Akt/GSK-3β and ERK1/2 in the process of SAA against I/R-incuced cardiomyocytes apoptosis. This review summarizes the recent evidence of the anti-apoptotic effects and mechanisms of SAA against myocardial I/R injury and discusses the basis of potential clinical applications of SAA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app