Add like
Add dislike
Add to saved papers

Niche and fitness differences determine invasion success and impact in laboratory bacterial communities.

ISME Journal 2018 September 26
There is increasing awareness of invasion in microbial communities worldwide, but the mechanisms behind microbial invasions remain poorly understood. Specifically, we know little about how the evolutionary and ecological differences between invaders and natives regulate invasion success and impact. Darwin's naturalization hypothesis suggests that the phylogenetic distance between invaders and natives could be a useful predictor of invasion, and modern coexistence theory proposes that invader-native niche and fitness differences combine to determine invasion outcome. However, the relative importance of phylogenetic distance, niche difference and fitness difference for microbial invasions has rarely been examined. By using laboratory bacterial microcosms as model systems, we experimentally assessed the roles of these differences for the success of bacterial invaders and their impact on native bacterial community structure. We found that the phylogenetic distance between invaders and natives failed to explain invasion success and impact for two of three invaders at the phylogenetic scale considered. Further, we found that invasion success was better explained by invader-native niche differences than relative fitness differences for all three invaders, whereas invasion impact was better explained by invader-native relative fitness differences than niche differences. These findings highlight the utility of considering modern coexistence theory to gain a more mechanistic understanding of microbial invasions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app