JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts.

Genes & Development 2018 October 2
A fundamental challenge in understanding cardiac biology and disease is that the remarkable heterogeneity in cell type composition and functional states have not been well characterized at single-cell resolution in maturing and diseased mammalian hearts. Massively parallel single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool to address these questions by interrogating the transcriptome of tens of thousands of nuclei isolated from fresh or frozen tissues. snRNA-seq overcomes the technical challenge of isolating intact single cells from complex tissues, including the maturing mammalian hearts; reduces biased recovery of easily dissociated cell types; and minimizes aberrant gene expression during the whole-cell dissociation. Here we applied sNucDrop-seq, a droplet microfluidics-based massively parallel snRNA-seq method, to investigate the transcriptional landscape of postnatal maturing mouse hearts in both healthy and disease states. By profiling the transcriptome of nearly 20,000 nuclei, we identified major and rare cardiac cell types and revealed significant heterogeneity of cardiomyocytes, fibroblasts, and endothelial cells in postnatal developing hearts. When applied to a mouse model of pediatric mitochondrial cardiomyopathy, we uncovered profound cell type-specific modifications of the cardiac transcriptional landscape at single-nucleus resolution, including changes of subtype composition, maturation states, and functional remodeling of each cell type. Furthermore, we employed sNucDrop-seq to decipher the cardiac cell type-specific gene regulatory network (GRN) of GDF15, a heart-derived hormone and clinically important diagnostic biomarker of heart disease. Together, our results present a rich resource for studying cardiac biology and provide new insights into heart disease using an approach broadly applicable to many fields of biomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app