Add like
Add dislike
Add to saved papers

Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors.

Transparent cells in the vertebrate optical tract, such as lens fiber cells and corneal epithelium cells, have specialized proteins that somehow permit only a low level of light scattering in their cytoplasm. It has been shown that both cell types contain (1) beaded intermediate filaments as well as (2) α-crystallin globulins. It is known that genetic and chemical alterations to these specialized proteins induce cytoplasmic opaqueness and visual complications. Crystallins were described previously in the retinal Müller cells of frogs. In the present work, using immunocytochemistry, fluorescence confocal imaging, and immuno-electron microscopy, we found that αA-crystallins are present in the cytoplasm of retinal Müller cells and in the photoreceptors of rats. Given that Müller glial cells were recently described as "living light guides" as were photoreceptors previously, we suggest that αA-crystallins, as in other highly transparent cells, allow Müller cells and photoreceptors to minimize intraretinal scattering during retinal light transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app