Add like
Add dislike
Add to saved papers

Resting and traveling localized states in an active phase-field-crystal model.

Physical Review. E 2018 August
The conserved Swift-Hohenberg equation (or phase-field-crystal [PFC] model) provides a simple microscopic description of the thermodynamic transition between fluid and crystalline states. Combining it with elements of the Toner-Tu theory for self-propelled particles, Menzel and Löwen [Phys. Rev. Lett. 110, 055702 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.055702] obtained a model for crystallization (swarm formation) in active systems. Here, we study the occurrence of resting and traveling localized states, i.e., crystalline clusters, within the resulting active PFC model. Based on linear stability analyses and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of periodic and localized, resting and traveling states in a one-dimensional active PFC model. This allows us, for instance, to explore how the slanted homoclinic snaking of steady localized states found for the passive PFC model is amended by activity. A particular focus lies on the onset of motion, where we show that it occurs either through a drift-pitchfork or a drift-transcritical bifurcation. A corresponding general analytical criterion is derived.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app