Add like
Add dislike
Add to saved papers

Effect of population abundances on the stability of large random ecosystems.

Physical Review. E 2018 August
Random matrix theory successfully connects the structure of interactions of large ecological communities to their ability to respond to perturbations. One of the most debated aspects of this approach is that so far studies have neglected the role of population abundances on stability. While species abundances are well studied and empirically accessible, studies on stability have so far failed to incorporate this information. Here we tackle this question by explicitly including population abundances in a random matrix framework. We derive an analytical formula that describes the spectrum of a large community matrix for arbitrary feasible species abundance distributions. The emerging picture is remarkably simple: while population abundances affect the rate to return to equilibrium after a perturbation, the stability of large ecosystems is uniquely determined by the interaction matrix. We confirm this result by showing that the likelihood of having a feasible and unstable solution in the Lotka-Volterra system of equations decreases exponentially with the number of species for stable interaction matrices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app