Add like
Add dislike
Add to saved papers

Robustness of functional networks at criticality against structural defects.

Physical Review. E 2018 August
The robustness of dynamical properties of neuronal networks against structural damages is a central problem in computational and experimental neuroscience. Research has shown that the cortical network of a healthy brain works near a critical state and, moreover, that functional neuronal networks often have scale-free and small-world properties. In this work, we study how the robustness of simple functional networks at criticality is affected by structural defects. In particular, we consider a two-dimensional Ising model at the critical temperature and investigate how its functional network changes with the increasing degree of structural defects. We show that the scale-free and small-world properties of the functional network at criticality are robust against large degrees of structural lesions while the system remains below the percolation limit. Although the Ising model is only a conceptual description of a two-state neuron, our research reveals fundamental robustness properties of functional networks derived from classical statistical mechanics models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app