Add like
Add dislike
Add to saved papers

Identification and analyses of natural compounds as potential inhibitors of TRAF6-Basigin interactions in melanoma using structure-based virtual screening and molecular dynamics simulations.

The interaction of the proteins, tumor necrosis factor receptor-associated factor6 (TRAF6) and Basigin (CD147), is known to be associated with the over-expression of matrix metalloproteinases (MMPs) in melanoma cells. MMPs are known to be responsible for melanoma metastasis. Hence, the TRAF6-Basigin complex can act as a potential therapeutic target. In previous studies, amino acid residues Lys340, Lys 384, Glu417 and Glu511 of TRAF6 were identified as the most vital residues on the basis of their contributions to interaction energy, relative solvent accessibility and electrostatic interactions in the TRAF6-Basigin protein-protein interaction (PPI) scheme. In our current work, we performed structure-based virtual screenings of some natural compounds obtained from ZINC database (n = 14509) to search for molecules which can act as inhibitors against the formation of TRAF6-Basigin complex. Three potential inhibitors were identified which were observed to make intermolecular interactions with Lys384 and Glu511 of TRAF6. Molecular dynamics simulation results suggested the substantial pharmacological importance of the ligand molecules as it was observed that there was total destabilization of TRAF6-Basigin complex upon binding of the molecule ZINC02578057. From our studies, we could conclude that the ligands termed as ZINC49048033, ZINC02578057 and ZINC72320240 could have great potentials to act as inhibitors to prevent melanoma metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app