JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting.

Microphysiological systems (MPS) may be able to provide the pharmaceutical industry models that can reflect human physiological responses to improve drug discovery and translational outcomes. With lack of efficacy being the primary cause for drug attrition, developing MPS disease models would help researchers identify novel targets, study mechanisms in more physiologically-relevant depth, screen for novel biomarkers and test/optimize various therapeutics (small molecules, nanoparticles and biologics). Furthermore, with advances in inducible pluripotent stem cell technology (iPSC), pharmaceutical companies can access cells from patients to help recreate specific disease phenotypes in MPS platforms. Combining iPSC and MPS technologies will contribute to our understanding of the complexities of neurodegenerative diseases and of the blood brain barrier (BBB) leading to development of enhanced therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app