Add like
Add dislike
Add to saved papers

Carrying capacity of a spatially-structured population: Disentangling the effects of dispersal, growth parameters, habitat heterogeneity and habitat clustering.

Carrying capacity, K, is a fundamental quantity in theoretical and applied ecology. When populations are distributed over space, carrying capacity becomes a complicated function of local, global and nearby environments, dispersal rate, and the relationship between population growth parameters, e.g., r and K. Expressions for the total carrying capacity, Ktotal , in an n-patch model that explicitly disentangle all of these factors are currently lacking. Therefore, here we derive Ktotal for a linear spatial array of n habitat patches with logistic growth and strong or weak random dispersal of individuals between adjacent patches. With strong dispersal, Ktotal depends on the mean r and K over all patches (〈r〉 and 〈K〉), the among-patch variance in K, and the linear regression coefficient of r on K, βr,K . Strong dispersal increases Ktotal only if βr, K  > 〈r〉/〈K〉, which requires a positive convex or negative concave association between r and K, and decreases Ktotal if βr, K  < 〈r〉/〈K〉. Alternatively, weak dispersal increases Ktotal only if the within-patch covariance of r and K, cov(r, K) is greater than the spatial covariance between r and K, cov(r, Km ), defined as the average covariance between r in a focal patch and K in neighboring patches. Unlike the strong dispersal limit, this condition depends not only on the magnitude of environmental heterogeneity, but explicitly on the spatial distribution of heterogeneity (i.e., habitat clustering). This work clarifies how the interaction between dispersal, habitat heterogeneity, and population growth parameters shape carrying capacity in spatial populations, with implications for species management, conservation and evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app