Add like
Add dislike
Add to saved papers

Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field.

Whether lipid rafts are present in the membranes of living cells remains hotly disputed despite their incontrovertible existence in liposomes at 298 K. In attempts to resolve this debate, molecular dynamics (MD) simulations have been extensively used to study lipid phase separation at high resolution. However, computation has been of limited utility in this respect because the experimental distributions of phases in lamellar lipid mixtures are poorly reproduced by simulations. In particular, all-atom (AA) approaches suffer from restrictions on accessible time scales and system sizes whereas the more efficient coarse-grained (CG) force fields remain insufficiently accurate to achieve correspondence with experiment. In this work, we refine the CG Martini parameters for the high- and low-melting temperature ( Tm ) lipids 1,2-dipalmitoyl- sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine (DOPC). Our approach involves the modification of bonded Martini parameters based on fitting to atomistic simulations conducted with the CHARMM36 lipid force field. The resulting CG parameters reproduce experimental structural and thermodynamic properties of homogeneous lipid membranes while concurrently improving simulation fidelity to experimental phase diagrams of DPPC, DOPC, and cholesterol lipid mixtures. Importantly, the refined parameters provide much better phase accuracy for regions near the critical point that mimic the lipid concentrations under physiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app