Add like
Add dislike
Add to saved papers

Formation and performance of self-forming dynamic membrane (SFDM) in membrane bioreactor (MBR) for treating low-strength wastewater.

This study introduces a self-forming dynamic membrane (SFDM) with large-pore mesh filter materials instead of conventional MF/UF membranes for wastewater treatment. Development of SFDM on the mesh filter surface plays a major role in reducing the wastewater turbidity and its performance in a self-formation dynamic membrane bioreactor (SFDMBR). To evaluate formation of the dynamic membrane, biological and hydrodynamic parameters, including mixed liquor suspended solids (MLSS) and aeration rate, were examined. The experimental results showed that with elevation of MLSS in the bioreactor (up to MLSS = 9,000 mg/L), the effluent turbidity diminishes with rapid formation of SFDM, with the shortest formation time (5 min) obtained in SFDM operations, though it results in increased membrane fouling. SFDM was well formed at low aeration rates of 2.5 L/min and 5 L/min, due to very low shear stress on the mesh filter surface, given the results of turbidity in comparison with aeration rates of 10 L/min and 15 L/min. The filtration performance of SFDM in treatment of synthetic wastewater was tested under a constant operational flux (58 L/m2 h). Total chemical oxygen demand (COD) and NH4 -N removals were 88-93% and 96-98.8%, respectively. These results indicated that the treatment process can be performed effectively by SFDMBR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app