Add like
Add dislike
Add to saved papers

Trapped Aqueous Films Lubricate Highly Hydrophobic Surfaces.

ACS Nano 2018 October 3
Friction at hydrophobic surfaces in aqueous media is ubiquitous ( e.g., prosthetic implants, contact lenses, microfluidic devices, biological tissue) but is not well understood. Here, we measure directly, using a surface force balance, both normal stresses and sliding friction in an aqueous environment between a hydrophilic surface (single-crystal mica) and the stable, molecularly smooth, highly hydrophobic surface of a spin-cast fluoropolymer film. Normal force versus surface separation profiles indicate a high negative charge density at the water-immersed fluoropolymer surface, consistent with previous studies. Sliding of the compressed surfaces under water or in physiological-level salt solution (0.1 M NaCl) reveals strikingly low boundary friction (friction coefficient μ ≈ 0.003-0.009) up to contact pressures of at least 50 atm. This is attributed largely to hydrated counterions (protons and Na+ ions) trapped in thin interfacial films between the compressed, sliding surfaces. Our results reveal how frictional dissipation may occur at hydrophobic surfaces in water and how modification of such surfaces may suppress this dissipation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app