Add like
Add dislike
Add to saved papers

Adult individuals with congenital, untreated, severe isolated growth hormone deficiency have satisfactory muscular function.

Endocrine 2018 September 25
PURPOSE: While growth hormone (GH) and the insulin-like growth factor type I (IGF-I) are known to exert synergistic actions on muscle anabolism, the consequences of prolonged GH deficiency (GHD) on muscle function have not been well defined. We have previously described a large cohort of subjects with isolated GHD (IGHD) caused by a mutation in the GH-releasing hormone receptor gene, with low serum levels of GH and IGF-I. The aim of this study was to assess muscular function in these IGHD subjects.

METHODS: A total of 31 GH-naïve IGHD (16 males) and 40 control (20 males) subjects, matched by age and degree of daily physical activity, were enrolled. Fat free mass was measured by bioelectrical impedance; muscle strength by dynamometry of handgrip, trunk extension, and knee extension; myoelectric activity and muscle fatigue by fractal dimension; conduction velocity in vastus medialis, rectus femoris, and vastus lateralis muscles by surface electromyography.

RESULTS: The IGHD group showed higher knee extension strength both when corrected for weight and fat free mass, and higher handgrip and trunk extension strength corrected by fat free mass. They also exhibit higher conduction velocity of the muscles vastus medialis, rectus femoris, and vastus lateralis, but lower free fat mass and myoelectric activity of the vastus medialis, rectus femoris and vastus lateralis. There were no differences between the two groups in fractal dimension in all studied muscles.

CONCLUSION: Individuals with untreated IGHD have better muscle strength parameters adjusted for weight and fat free mass than controls. They also exhibit greater peripheral resistance to fatigue, demonstrating satisfactory muscle function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app