Add like
Add dislike
Add to saved papers

Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB₂-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method.

Materials 2018 September 25
To address the various shortcomings of a high material cost, energy-intensive temperature conditions and ultra-low efficiency of the conventional boro/carbothermal reduction method for the industrial preparation of ZrB₂-SiC powders, a novel molten-salt and microwave-modified boro/carbothermal reduction method (MSM-BCTR) was developed to synthesize ZrB₂-SiC powders. As a result, phase pure ZrB₂-SiC powders can be obtained by firing low-cost zircon (ZrSiO₄), amorphous carbon (C), and boron carbide (B₄C) at a reduced temperature of 1200 °C for only 20 min. Such processing conditions are remarkably milder than not only that required for conventional boro/carbothermal reduction method to prepare phase pure ZrB₂ or ZrB₂-SiC powders (firing temperature of above 1500 °C and dwelling time of at least several hours), but also that even with costly active metals (e.g., Mg and Al). More importantly, the as-obtained ZrB₂ particles had a single crystalline nature and well-defined plate-like morphology, which is believed to be favorable for enhancing the mechanical properties, especially toughness of their bulk counterpart. The achievement of a highly-efficient preparation of such high-quality ZrB₂-SiC powders at a reduced temperature should be mainly attributed to the specific molten-salt and microwave-modified boro/carbothermal reduction method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app