Add like
Add dislike
Add to saved papers

Glucose metabolism by Escherichia coli inhibits Vibrio cholerae intestinal colonization of zebrafish.

Infection and Immunity 2018 September 25
The V. cholerae O1 serogroup is responsible for pandemic cholera and is divided into the classical and El Tor biotypes. Classical V. cholerae produces acid when using glucose as a carbon source, whereas El Tor V. cholerae produces the neutral product acetoin when using glucose as a carbon source. An earlier study demonstrated that Escherichia coli strains that metabolize glucose to acidic by-products drastically reduced the survival of V. cholerae strains in vitro. In the present study, zebrafish were fed 1% glucose and inoculated with single V. cholerae or E. coli strains or co-infected with both V. cholerae and E. coli A significant decrease in classical biotype colonization was observed after glucose feeding due to acid production in the zebrafish intestine. El Tor colonization was unaffected by glucose alone. However, the El Tor strain exhibited significantly lower colonization of the zebrafish when either of the acid producing E. coli was co-inoculated in the presence of glucose. An E. coli sugar transport mutant had no effect on V. cholerae colonization even in presence of glucose. Glucose and E. coli produced a prophylactic effect on El Tor colonization in zebrafish when E. coli was inoculated before V. cholerae infection. Thus, the probiotic feeding of E. coli inhibits V. cholerae colonization in a natural host. This suggests that a similar inhibitory effect could be seen in cholera patients, especially if glucose-based oral rehydration solution (ORS) is administered in combination with probiotic E. coli during cholera treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app