Add like
Add dislike
Add to saved papers

Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system.

Polymeric protein-based biocomposites were used in this work as water dispersions to generate, in situ, biobased mulching coatings by spray technique, as alternative to low density polyethylene films for soil mulching. At the end of their lifetime, these biodegradable coatings degrade in soil thank to the microbial community that mineralizes them. Protein hydrolysates (PH) were derived from waste products of the leather industry, while poly(ethylene glycol) diglycidyl ether (PEG) and epoxidized soybean oil (ESO) were used to make the biodegradable spray coatings. A study under greenhouse condition was carried out using seedling test plots in order to investigate the performance of the spray coatings and their possible influence on some aspects of leaf growth, functionality and nutritional quality of lettuce (Lactuca sativa L., Mortarella selection Romanella variety Duende) and on soil properties. The biodegradable coatings showed the same good agronomic performances comparable with the ones of a commercial low density polyethylene mulching film, maintaining the mulching effect for the requested cultivation period and ensuring at the same time a similar rate of plant growth and dry matter accumulation. The research showed that 2 months after the tillage carried out at the end of the cultivation the amount of coating residues present in the soil was <5% of the initial weight of the biodegradable coatings. At the end of the field test, the soil mulched with the polyethylene film recorded an electrical conductivity value lower with respect to the soil mulched with the sprayed coatings, which release nutrients in the soil during their decomposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app