Add like
Add dislike
Add to saved papers

Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice.

Nature Biotechnology 2018 November
Staphylococcus aureus and other staphylococci continue to cause life-threatening infections in both hospital and community settings. They have become increasingly resistant to antibiotics, especially β-lactams and aminoglycosides, and their infections are now, in many cases, untreatable. Here we present a non-antibiotic, non-phage method of treating staphylococcal infections by engineering of the highly mobile staphylococcal pathogenicity islands (SaPIs). We replaced the SaPIs' toxin genes with antibacterial cargos to generate antibacterial drones (ABDs) that target the infecting bacteria in the animal host, express their cargo, kill or disarm the bacteria and thus abrogate the infection. Here we have constructed ABDs with either a CRISPR-Cas9 bactericidal or a CRISPR-dCas9 virulence-blocking module. We show that both ABDs block the development of a murine subcutaneous S. aureus abscess and that the bactericidal module rescues mice given a lethal dose of S. aureus intraperitoneally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app