JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Defined Xeno-free and Feeder-free Culture Conditions for the Generation of Human iPSC-derived Retinal Cell Models.

The production of specialized cells from pluripotent stem cells provides a powerful tool to develop new approaches for regenerative medicine. The use of human-induced pluripotent stem cells (iPSCs) is particularly attractive for neurodegenerative disease studies, including retinal dystrophies, where iPSC-derived retinal cell models mark a major step forward to understand and fight blindness. In this paper, we describe a simple and scalable protocol to generate, mature, and cryopreserve retinal organoids. Based on medium changing, the main advantage of this method is to avoid multiple and time-consuming steps commonly required in a guided differentiation of iPSCs. Mimicking the early phases of retinal development by successive changes of defined media on adherent human iPSC cultures, this protocol allows the simultaneous generation of self-forming neuroretinal structures and retinal pigmented epithelial (RPE) cells in a reproducible and efficient manner in 4 weeks. These structures containing retinal progenitor cells (RPCs) can be easily isolated for further maturation in a floating culture condition enabling the differentiation of RPCs into the seven retinal cell types present in the adult human retina. Additionally, we describe quick methods for the cryopreservation of retinal organoids and RPE cells for long-term storage. Combined together, the methods described here will be useful to produce and bank human iPSC-derived retinal cells or tissues for both basic and clinical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app