Add like
Add dislike
Add to saved papers

Design, Synthesis, and SAR Studies of Heteroarylpyrimidines and Heteroaryltriazines as CB 2 R Ligands.

ChemMedChem 2018 September 25
Herein we describe the design and synthesis of a new series of heteroarylpyrimidine/heteroaryltriazine derivatives on the basis of quinazoline-2,4(1H,3H)-diones as CB2 R-selective ligands using a bioisosterism strategy. An acetamide group was explored to displace the enamine linker of the lead compound for the purpose of stereoisomerism elimination and hydrophilicity increase. As a result, some of the synthesized compounds showed high bioactivity and selectivity for CB2 R in calcium mobilization assays, and four displayed CB2 R agonist activity, with EC50 values below 30 nm. The compound exhibiting the highest agonist activity toward CB2 R (EC50 =7.53±3.15 nm) had a selectivity over CB1 R of more than 1328-fold. Moreover, structure-activity relationship (SAR) studies indicated that the substituents on the nucleus play key roles in the functionality of a ligand, with one such example demonstrating CB2 R antagonist activity. Additionally, molecular docking simulations were conducted with the aim of better understanding of these new derivatives in relation to the structural requirements for agonists/antagonists binding to CB2 R.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app