Add like
Add dislike
Add to saved papers

Relationship of Depth Adaptation Between Disparity-Specified Plaids and Their Components.

I-Perception 2018 September
In the luminance domain, studies show that perceived contrasts of plaids are a nonlinear summation of their components. In the disparity domain, perceived depth has been studied by using a depth adaptation paradigm with simple surfaces; however, the relationship between depth adaptation between plaids and their components has not been investigated. To clarify this, combinations of disparity-defined horizontal corrugation (marked as horizontal ) and disparity-defined plaids as adaptor-probe pairs were used. Three experiments were performed: The first two compared the aftereffects between horizontal-horizontal and plaid-horizontal pairs (Comparison 1) and between horizontal-plaid and plaid-plaid pairs (Comparison 2). Experiments 1 and 2 controlled the plaids to have the same and doubled peak-to-trough amplitudes as the horizontal corrugation, respectively. In Comparison 1, the horizontal or horizontally oriented component of the plaids was adapted. In Comparison 2, the plaid adaptor or horizontally oriented component of the plaid test stimuli was adapted. Thus, depth adaptation may be linked to cyclopean-oriented depth-from-disparity bandpass filters. The depth adaptation degree was determined by the adaptation of amplitudes of the similar oriented channels between the adaptation and test stimuli. Experiment 3 compared the aftereffects between noise-horizontal and horizontal-horizontal pairs. Since the noise adaptor contained multispatial frequency channels, only the channels with similar spatial frequencies as the horizontal corrugation were adapted, thus causing smaller depth aftereffects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app