Add like
Add dislike
Add to saved papers

System network analysis of genomics and transcriptomics data identified type 1 diabetes-associated pathway and genes.

Genes and Immunity 2018 September 25
Genome-wide association studies (GWASs) have discovered >50 risk loci for type 1 diabetes (T1D). However, those variations only have modest effects on the genetic risk of T1D. In recent years, accumulated studies have suggested that gene-gene interactions might explain part of the missing heritability. The purpose of our research was to identify potential and novel risk genes for T1D by systematically considering the gene-gene interactions through network analyses. We carried out a novel system network analysis of summary GWAS statistics jointly with transcriptomic gene expression data to identify some of the missing heritability for T1D using weighted gene co-expression network analysis (WGCNA). Using WGCNA, seven modules for 1852 nominally significant (P ≤ 0.05) GWAS genes were identified by analyzing microarray data for gene expression profile. One module (tagged as green module) showed significant association (P ≤ 0.05) between the module eigengenes and the trait. This module also displayed a high correlation (r = 0.45, P ≤ 0.05) between module membership (MM) and gene significant (GS), which indicated that the green module of co-expressed genes is of significant biological importance for T1D status. By further describing the module content and topology, the green module revealed a significant enrichment in the "regulation of immune response" (GO:0050776), which is a crucially important pathway in T1D development. Our findings demonstrated a module and several core genes that act as essential components in the etiology of T1D possibly via the regulation of immune response, which may enhance our fundamental knowledge of the underlying molecular mechanisms for T1D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app