Add like
Add dislike
Add to saved papers

Hydroxyurea attenuates oxidative, metabolic, and excitotoxic stress in rat hippocampal neurons and improves spatial memory in a mouse model of Alzheimer's disease.

Neurobiology of Aging 2018 December
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by accumulation of amyloid β-peptide (Aβ) plaques in the brain and decreased cognitive function leading to dementia. We tested if hydroxyurea (HU), a ribonucleotide reductase inhibitor known to activate adaptive cellular stress responses and ameliorate abnormalities associated with several genetic disorders, could protect rat hippocampal neurons against oxidative-, excitatory-, mitochondrial-, and Aβ-induced stress and if HU treatment could improve learning and memory in the APP/PS1 mouse model of AD. HU treatment attenuated the loss of cell viability induced by treatment of hippocampal neurons with hydrogen peroxide, glutamate, rotenone, and Aβ1-42 . HU treatment attenuated reductions of mitochondrial reserve capacity, maximal respiration, and cellular adenosine triphosphate content induced by hydrogen peroxide treatment. In vivo, treatment of APP/PS1 mice with HU (45 mg/kg/d) improved spatial memory performance in the hippocampus-dependent Morris water maze task without reducing Aβ levels. HU provides neuroprotection against toxic insults including Aβ, improves mitochondrial bioenergetics, and improves spatial memory in an AD mouse model. HU may offer a new therapeutic approach to delay cognitive decline in AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app