Add like
Add dislike
Add to saved papers

Visible light driven photo-degradation of Congo red by TiO 2 ZnO/Ag: DFT approach on synergetic effect on band gap energy.

Chemosphere 2018 December
In this paper, we report the combination of two metal oxides (TiO2 ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2 , a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2 ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2 ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 Ī) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2 ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2 ZnO NPs, no fluorescent response was seen within the cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app