Add like
Add dislike
Add to saved papers

Stabilization of Laccase Through Immobilization on Functionalized GO-Derivatives.

This chapter deals with the use of functionalized derivatives of graphene oxide as nanoscaffolds for the immobilization and stabilization of laccase from Trametes versicolor. Covalent and noncovalent immobilization approaches are described, while a novel method for the development of laccase-based multilayer nanoassemblies is also presented. Various biochemical, spectroscopic, and microscopic techniques were applied to characterize the nanobiocatalytic systems in respect to their microstructure and catalytic performance. Laccase-GO nanosystems were characterized with FTIR spectroscopy in order to confirm the functionalization of the nanomaterials, as well as to interpret the nanomaterial-enzyme interactions, while the multilayer structure of laccase-based multilayer nanoassemblies was confirmed by atomic force microscopy. The nanobiocatalytic systems presented here demonstrated exceptional stability and reusability compared with the free enzyme form, leading to robust biocatalytic systems appropriate for various applications of industrial interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app