Add like
Add dislike
Add to saved papers

Feasibility of using computer simulation to predict the postoperative outcome of the minimally invasive Nuss procedure: Simulation prediction vs. postoperative clinical observation.

The Nuss procedure is the most minimally invasive and commonly used surgical correction for pectus excavatum (PE) by using a prebent pectus bar to elevate the deformed chest wall. However, there are some complications associated with this procedure such as postoperative pain as well as surgical uncertainties because of human judgment. It is therefore important to understand the biomechanical effect of the pectus bar on PE thoraces undergoing an operation to alleviate the postoperative pain as well as to improve surgical outcome. The current study incorporated the finite element method (FEM) to simulate the entire Nuss procedure including the flipping process of the pectus bar on a preoperative PE patient-specific thorax model, in conjunction with comparison against the postoperative CT scans. The mid-sagittal sternovertebral elevation was found to be within 5.32 mm, whereas the transverse sternal deviations ranged from 1.59 to 3.02 mm. The average discrepancy between the predicted contour and postoperative CT contour was approximately 3%. On a different note, the stress and strain distributions largely concurred with reported findings. High bilateral stress was seen to occur at the back of ribs near the vertebral column, and particularly over the second to fifth ribs, whereas the greatest strain was found to be confined to the regions of costal cartilages. It is evident that the FEM is a feasible and robust approach in predicting the outcome of the mechanical surgical procedure. This contributes to the future development of a predictive tool incorporated in surgical planning to enhance surgical management of PE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app