Add like
Add dislike
Add to saved papers

Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.

Elevated CO2 along with drought is a serious global threat to crop productivity. Therefore, understanding the molecular mechanisms plants use to protect these stresses is the key for plant growth and development. In this study, we mimicked natural stress conditions under a controlled Soil-Plant-Atmosphere-Research (SPAR) system and provided the evidence for how miRNAs regulate target genes under elevated CO2 and drought conditions. Significant physiological and biomass data supported the effective utilization of source-sink (leaf to root) under elevated CO2 . Additionally, elevated CO2 partially rescued the effect of drought on total biomass. We identified both known and novel miRNAs differentially expressed during drought, CO2 , and combined stress, along with putative targets. A total of 32 conserved miRNAs belonged to 23 miRNA families, and 25 novel miRNAs were identified by deep sequencing. Using the existing sweet potato genome database and stringent analyses, a total of 42 and 22 potential target genes were predicted for the conserved and novel miRNAs, respectively. These target genes are involved in drought response, hormone signaling, photosynthesis, carbon fixation, sucrose and starch metabolism, etc. Gene ontology and KEGG ontology functional enrichment revealed that these miRNAs might target transcription factors (MYB, TCP, NAC), hormone signaling regulators (ARF, AP2/ERF), cold and drought factors (corA), carbon metabolism (ATP synthase, fructose-1,6-bisphosphate), and photosynthesis (photosystem I and II complex units). Our study is the first report identifying targets of miRNAs under elevated CO2 levels and could support the molecular mechanisms under elevated CO2 in sweet potato and other crops in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app