Add like
Add dislike
Add to saved papers

Bile acids down-regulate the expression of Augmenter of Liver Regeneration (ALR) via SHP/HNF4α1 and independent of Egr-1.

Bile acids (BA) are signaling molecules that activate nuclear factors and g-protein coupled receptors signaling to maintain metabolic homeostasis. However, accumulation of toxic BA promotes liver injury by initiating inflammation, inducing apoptosis and causing oxidative stress leading to cirrhosis and liver failure. Augmenter of Liver Regeneration (ALR) is a hepatotrophic growth factor with anti-apoptotic and anti-oxidative properties that has been shown to improve mitochondrial and hepatic functions in rats after bile duct ligation. In the current study we aimed to analyze the regulation of the pro-survival protein, ALR, under conditions of cytotoxic concentrations of BA. Promoter studies of ALR (-733/+527 bp) revealed potential binding sites for various transcription factors like Egr-1, HNF4α and two bile acid response elements (BARE). Using a full-length and several truncated promoter constructs for ALR we analyzed promoter activity and showed that BA reduce ALR promoter activity whereas Egr-1 transfection induces it. EMSA and supershift analysis confirmed the specific binding of Egr-1 to its response element within ALR promoter and this binding was reduced upon simultaneous stimulation with BA. We also showed that ALR promoter activity and protein expression are induced by HNF4α1 and repressed by SHP. In conclusion, these results indicate that BA negatively regulate ALR expression by SHP activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app