JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

One for All, but Not All for One: Social Behavior during Bacterial Diseases.

It has been known for decades that individual cells within pathogenic bacterial populations have reduced antibiotic susceptibility, which is linked to decreased metabolic rates. A similar phenomenon occurs with virulence-associated proteins, as reduced expression is associated with increased fitness of individual cells. Non-producers within the population can benefit from the virulence proteins produced by others in the population without suffering a fitness cost, thus maintaining a genetically uniform population. Cooperative behavior has been reported for Salmonella and Yersinia, consistent with selection of social behavior to retain genes associated with pathogenesis; however, cooperation was unclear within Mycobacterium populations. This review focuses on these recent descriptions of cooperation, discusses the mechanisms driving heterogeneity, and evaluates the evidence that expression of virulence-associated proteins comes at a fitness cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app