Add like
Add dislike
Add to saved papers

Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal.

In this study, the hollow mesoporous carbon spheres (HMCs) were synthesized and modified for laccase (Lac) immobilization, and the structural characteristics of HMCs materials were determined by FESEM, TEM and FTIR etc. The maximum loading of Lac on the HMCs materials could reach 835 mg/g, meanwhile, the immobilized Lac exhibited excellent thermo-stability, pH stability, storage stability and reusability. The antibiotics removal experiments indicated that the immobilized Lac possess efficient removal efficiency for both tetracycline hydrochloride (TCH) and ciprofloxacin hydrochloride (CPH) in the presence of redox mediator. The synergy of the adsorption by HMCs and the degradation by Lac could be the reasons for the high removal of antibiotics. Meanwhile, for investigating degradation mechanism, the degradation product analysis and molecular docking method had been introduced to this study. According to the degradation products, dehydroxylation and demethylation are major degradation reactions for TCH degradation, and the oxidation of the piperazinyl substituent and hydroxylation are the major degradation for CPH degradation. The docking results showed that some important residues played the key role in the degradation process. This study indicated that the immobilization of Lac on HMCs could be potentially applied in environmental remediation of antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app