Add like
Add dislike
Add to saved papers

Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing.

Animal tendons have been shown to act as shock absorbers to protect muscle fascicles from exercise-induced damage during landing tasks. Meanwhile, the contribution of tendinous tissues to damping activities such as landing has been less explored in humans. The aim of this study was to analyze in vivo fascicle-tendon interactions during drop landing to better understand their role in energy dissipation. Ultrafast ultrasound images of the gastrocnemius medialis (GM) and vastus lateralis (VL), lower limb electromyographic activity, 2-D kinematics, and ground reaction forces were collected from twelve participants during single- and double-leg drop landings from various heights. For both muscles, length changes were higher in tendinous tissues than in fascicles, demonstrating their key role in protecting fascicles from rapid active lengthening. Increasing landing height increased lengthening and peak lengthening velocity of VL fascicle and GM architectural gear ratio, whereas GM fascicle displayed similar length and velocity patterns. Single-leg landing lengthens the tendinous tissues of GM and, to a greater degree, VL muscles, without affecting the fascicles. These findings demonstrate the adjustment in fascicle-tendon interactions to withstand mechanical demand through the tendon buffer action and fascicle rotation. The higher VL fascicle contribution to negative work as the drop height increases would suggest muscle-specific damping responses during drop landing. This can originate from the distal-to-proximal sequence of joint kinetics, from differences in muscle and tendon functions (one- and two-joint muscles), architectural and morphological properties (eg, tendon stiffness), as well as from the muscle activity of the GM and VL muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app