Add like
Add dislike
Add to saved papers

Toxicological assessment of lambda-cyhalothrin and acetamiprid insecticides formulated mixture on hatchability rate, histological aspects, and protein electrophoretic pattern of Biomphalaria alexandrina (Ehrenberg, 1831) snails.

Several formulated mixtures of pesticides are widely used in modern agriculture. Nevertheless, the agriculture runoff causes a serious damage to the aquatic ecosystem. Therefore, the present study aims to use B. alexandrina snails as bioindicators for 30 g/l lambda-cyhalothrin and 17 g/l acetamiprid as a formulated mixture insecticide. Results showed that it has a molluscicidal activity against snails at LC50 7.9 mg/l. The hatchability percent of both treated 1-day-aged and/or 3-day-aged groups were less than that of the control group. The sublethal concentrations of the tested insecticide caused a remarkable abnormal necrosis in male and female gametogenic cells, besides a severe damage in both secretory and digestive cells. The results of SDS-PAGE protein profiles of treated snails showed that the least number of protein bands was noticed in snail groups that subjected to LC10 (6.6 mg/l) and LC25 (7.2 mg/l) concentrations when compared to control protein fractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app