Add like
Add dislike
Add to saved papers

Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis.

Endocrine 2018 September 22
PURPOSE: The aim of the present study was to analyze the involvement of oxidative stress and inflammation in the modulation of glucocorticoid production in the adrenal cortex of diabetic rats.

METHODS: Male Wistar rats were treated with or without streptozotocin (STZ, an insulinopenic model of diabetes) and either α-lipoic (90 mg/kg ip.), α-tocopherol (200 mg/kg po.) or with STZ and supplemented with insulin (STZ + INS: 2.5U/day) for 4 weeks. Oxidative/nitrosative stress parameters and antioxidant enzymes were determined in adrenocortical tissues. Apoptosis and macrophage activation were evaluated by immunohistochemistry (TUNEL and ED1+ ). Basal and ACTH-stimulated corticosterone production were assessed by RIA and plasma ACTH levels were determined by an immunometric assay.

RESULTS: Diabetic rats showed a diminished response to exogenous ACTH stimulation along with higher basal corticosterone and lower plasma ACTH levels. In the adrenal cortex we determined an increase in the levels of lipoperoxides, S-nitrosothiols, nitric oxide synthase activity and nitro-tyrosine modified proteins while catalase activity and heme oxygenase-1 expression levels were also elevated. Antioxidant treatments were effective in the prevention of these effects, and in the increase in the number of apoptotic and phagocytic (ED1+ ) cells detected in diabetic rats. No changes were observed in the STZ + INS group.

CONCLUSIONS: Generation of oxidative/nitrosative stress in the adrenal cortex of diabetic rats leads to the induction of apoptosis and the activation of adrenocortical macrophages and is associated with an elevated basal corticosteronemia and the loss of the functional capacity of the gland.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app