Add like
Add dislike
Add to saved papers

Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities.

Carbohydrate Polymers 2018 December 2
Coumarin and curcumin have a wide spectrum of biological and pharmacological activities including antioxidant, anti-inflammatory, antimicrobial and anticancer but hindered therapeutic applications due to low stability and poor solubility in water. The main objective of the current study was to overcome these drawbacks via improved bioavailability by nanoencapsulated emulsions. Pickering emulsion (PE) via oil-in-water approach were stabilized by aminated nanocellulose (ANC) particles through application of a full factorial optimization design for nanoemulsions containing different composition of oil phase with medium chain triglyceride (MCT) and Tween 80. The fabricated nanoemulsions and PEs with average particle sizes (≤150 nm) were obtained. Influencing factors such as ANC concentration, storage time and pH on the stability of emulsions were examined alongside zeta potentials. Encapsulation efficiency (EE) of coumarin and curcumin were determined as >90%. Release kinetic profiles for encapsulated PEs displayed sustained release with supposed increase bioavailability. Higher release percent were detected for curcumin encapsulated PE in contrast to coumarin. In vitro cytotoxicity evaluation for coumarin and curcumin loaded PEs were further investigated for anticancer and antimicrobial activities using human cell lines (L929 and MCF-7) and different microorganisms (Gram (+), Gram (-) and fungi), respectively. The results clearly demonstrated PE coumarin and curcumin as promising candidates to inhibit microbial growth and to prevent preferential killing of cancer cells compared to normal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app