Add like
Add dislike
Add to saved papers

Over-expressed microRNA-181a reduces glomerular sclerosis and renal tubular epithelial injury in rats with chronic kidney disease via down-regulation of the TLR/NF-κB pathway by binding to CRY1.

Molecular Medicine 2018 September 19
BACKGROUND: MicroRNAs (miRNAs) contribute to the progression of chronic kidney disease (CKD) by regulating renal homeostasis. This study explored the effects of miR-181a on CKD through the Toll-like receptor (TLR)/nuclear factor-kappa B (NF-κB) pathway by binding to CRY1.

METHODS: Seventy male rats were selected and assigned into specific groups: miR-181a mimic, miR-181a inhibitor, and siRNA against CRY1, with each group undergoing different treatments to investigate many different outcomes. First, 24-h urinary protein was measured. ELISA was used to determine the serum levels of SOD, ROS, MDA, IL-1β, IL-6, and TNF-α. Biochemical tests for renal function were performed to measure albumin, uric acid, and urea in urine and urea nitrogen and creatinine in serum. The glomerulosclerosis index (GSI) and renal tubular epithelial (RTE) cell apoptosis were detected using PASM staining and TUNEL staining, respectively. Finally, RT-qPCR and western blot were done to determine miR-181a, CRY1, TLR2, TLR4, and NF-κB expression.

RESULTS: CRY1 is the target gene of miR-181a, according to a target prediction program and luciferase assay. Rats diagnosed with CKD presented increases in 24-h urinary protein; GSI; RTE cell apoptosis rate; serum ROS, MDA, IL-1β, IL-6, and TNF-α; and CRY1, TLR2, TLR4, and NF-κB expression, as well as decreases in SOD level and miR-181a expression. Following transfection with either the miR-181a mimic or si-CRY1, 24-h urinary protein, renal damage, GSI, and cell apoptosis rate were all decreased. In addition, the overexpression of miR-181a or inhibition of CRY1 alleviated the degree of kidney injury through suppression of the TLR/NF-κB pathway.

CONCLUSION: miR-181a alleviates both GS and RTE injury in CKD via the down-regulation of the CRY1 gene and the TLR/NF-κB pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app