Add like
Add dislike
Add to saved papers

A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection.

Herein, we report a facile enzyme-free microRNA (miRNA) target-triggered strand displacement reaction (SDR) amplification strategy with ferrocene (Fc) as a signal molecule to fabricate a two-dimensional electroactive molybdenum carbide (Mo2 C)-based biosensor. In the presence of miRNA-21, SDR was initiated and many hairpin DNA1 (HDNA1) and hairpin DNA2 (HDNA2) duplexes, which could be captured by probe DNA leading the Fc-modified HDNA2 close to the electrode surface, were produced continuously. MiRNA-21 could be detected by monitoring the redox signal of Fc. The prepared N-carboxymethyl chitosan/Mo2 C nanocomposite featured excellent conductivity, great dispersion, and multiple functional groups (amine groups). When the nanocomposite was introduced to a miRNA biosensor electrode interface to ensure its strong connection to the DNA probe, the developed miRNA-21 biosensor demonstrated a reliable linear range of 1.0 fM to 1.0 nM with a detection limit of 0.34 fM and showed good selectivity, reproducibility, and stability. The biosensor was employed to detect miRNA-21 in human serum samples, and it showed great potential in the early clinical diagnosis of various genetic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app