Add like
Add dislike
Add to saved papers

Novel high-gluten flour physically cross-linked graphene oxide composites: Hydrothermal fabrication and adsorption properties for rare earth ions.

Graphene oxide (GO) nanosheets were immobilized and cross-linked by high-gluten flour (HGF), and a series of biomass-GO composites with various HGF-to-GO mass ratios were fabricated through a one-step hydrothermal method. The HGF-GO composites were used as novel adsorbents to adsorb rare earth ions (REE3+ : La3+ , Yb3+ , Y3+ , Er3+ and Nd3+ ) from aqueous solutions, and their adsorption properties were also investigated detailly. To evaluate the physicochemical properties of HGF-GO composites and further understand the mechanisms of adsorption of REE3+ onto HGF-GO composites, the HGF-GO composites were characterized by scanning electron microscopy (SEM), thermal gravimetric analyzer (TGA), Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Several important condition parameters including contact time, initial REE3+ concentrations, solution pH values and temperature that might affect the adsorption process were studied in detail. The maximum adsorption capacities of HGF-GO1:1 composite toward La3+ , Yb3+ , Y3+ , Er3+ and Nd3+ were 30.32, 36.64, 32.84, 42.36 and 48.68 mg g-1 , respectively. The experimental data indicated that the adsorption of REE3+ onto HGF-GO1:1 was well fitted by the pseudo-second order kinetic model and the Langmuir isotherm model, and the adsorption process was a spontaneous and endothermic reaction. The HGF-GO1:1 composite could be well regenerated and reused after five adsorption-desorption cycles, and its removal efficiency for Yb3+ remained as a constant of 100%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app