Add like
Add dislike
Add to saved papers

Bisphenol A (BPA) and bisphenol S (BPS) alter the promoter activity of the ABCB1 gene encoding P-glycoprotein in the human placenta in a haplotype-dependent manner.

Exposure to bisphenols (BPA and BPS) during pregnancy can significantly affect fetal development and increase risk of adverse health consequences, however the underlying mechanisms are not fully elucidated. In human placenta, the efflux transporter P-glycoprotein (P-gp), encoded by the ABCB1 gene, extrudes its substrates from the trophoblasts back into the maternal circulation. Alterations in levels of placental P-gp could therefore significantly affect fetal exposure to xenobiotics that are P-gp substrates. The ABCB1 promoter contains many single nucleotide polymorphisms (SNPs). In the genome, SNPs are not arrayed as independent variants but as combinations forming defined haplotypes. Recently, we determined the haplotype sequences encompassing the ABCB1 promoter SNPs and found that promoter haplotypes differentially affect ABCB1 promoter activity. Here we investigate the effect of BPA and BPS on ABCB1 promoter activity by testing the hypothesis that BPA and BPS exposure affect ABCB1 promoter activity in a haplotype-dependent manner. Our data indicate that acute exposure to 50 nM BPA induced a significant haplotype-dependent increase in ABCB1 promoter activity (P < .05). However, acute exposure to 0.5 nM BPS induced a significant decrease (P < .05) in promoter activity that was haplotype-dependent. Chronic exposure to BPA and BPS individually (5 nM and 0.3 nM, respectively) or as a mixture (5 nM BPA:1.5 nM BPS) induced significant haplotype-dependent increases (P < .01) in ABCB1 promoter activity. Our data indicate that BPA and BPS significantly alter ABCB1 promoter activity in a haplotype- and exposure type- dependent manners. Such alteration could significantly impact placental P-gp levels and alter fetal exposure to many therapeutic and environmental xenobiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app