Add like
Add dislike
Add to saved papers

Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector.

Nanotechnology 2018 December 15
High-performance photodetectors are desirable for various applications, including multi-wavelength image sensing, communication, and safety monitoring. In this study, we report the construction of a dual-surface plasmon-enhanced silicon Schottky photodetector using Au nanoparticles (NPs)/graphene/Au NPs hybrid structure as the electrode. It was found that the as-assembled device exhibited broad sensitivity, ranging from ultraviolet to near-infrared light (360-1330 nm) at room temperature, with a high response speed of 360 ns and a 3 dB bandwidth of 780 kHz at zero bias. Further theoretical simulation based on the finite-element method revealed that good device performance is associated with the contribution of the Au NPs/graphene/Au NPs electrode: intense dual-plasmonic resonance coupling is induced in a hybrid structure of two layers of metallic NPs separated by a uniform monolayer graphene. It not only can enhance light trapping and the localized electric field at the resonant and off-resonant wavelength regions, but is also beneficial for the tunneling of hot electrons. This work demonstrated the great potential of dual-plasmonic resonance coupling in optoelectronic devices and will lead to the development of advanced plasmonic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app