Add like
Add dislike
Add to saved papers

IL-9 Blockade Suppresses Silica-induced Lung Inflammation and Fibrosis in Mice.

Recapitulative animal models of idiopathic pulmonary fibrosis (IPF) and related diseases are lacking, which inhibits our ability to fully clarify the pathogenesis of these diseases. Although lung fibrosis in mouse models is often induced by bleomycin, silica-induced lung fibrosis is more sustainable and more progressive. Therefore, in this study, we sought to elucidate the mediator(s) responsible for the pathogenesis of lung fibrosis, through the use of a mouse model of silica-induced lung fibrosis. With a single nasal administration of 16 mg of silica, lung inflammation (assessed by elevated cellular components in the BAL fluids [BALFs]) and lung fibrosis (assessed by lung histology and lung hydroxyproline levels) were induced and sustained for as long as 24 weeks. Of the mediators measured in the BALFs, IL-9 was characteristically elevated gradually, and peaked at 24 weeks after silica administration. Treatment of silica-challenged mice with anti-IL-9-neutralizing antibody inhibited lung fibrosis, as assessed by lung hydroxyproline level, and suppressed the levels of major mediators, including IL-1β, IL-6, IL-12, CCL2, CXCL1, and TNF-α in BALFs. Moreover, human lung specimens from patients with IPF have shown high expression of IL-9 in alveolar macrophages, CD4-positive cells, and receptors for IL-9 in airway epithelial cells. Collectively, these data suggest that IL-9 plays an important role in the pathogenesis of lung fibrosis in diseases such as IPF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app