Add like
Add dislike
Add to saved papers

Kinetic Insights into Marangoni Effect-Assisted Preparation of Ultrathin Hydrogel Films.

In a previous work ( ACS Appl. Mater. Interfaces 2017, 9, 34349-34355), a facile approach was reported to prepare thin hydrogel films based on the Marangoni effect. After dripping onto a water surface, a drop of ethanol solution of poly(stearyl acrylate- co-acrylic acid) [P(SA- co-AAc)] spread quickly to form a thin film. The solvent exchange from ethanol to water led to the gelation of polymer solution which turned into a hydrogel film. Here, we investigate the scenario and seek for the governing kinetics of the Marangoni effect-assisted preparation of hydrogel films. By incorporating aggregation-induced emission fluorogens into the P(SA- co-AAc) solution, so that fluorescence appears at the gel state, we found that the spreading usually completed before the full gelation of the entire film. The spreading and formation of the gel films were influenced by the molar fraction of SA, f, and the polymer concentration of ethanol solution, CP . The spreading was blocked when CP was too high, whereas the film was fragmented into small pieces when CP was too low. At an intermediate CP , uniform hydrogel films were obtained. Steady spreading at a constant speed was observed during the processes which yielded uniform hydrogel films. Both CP and f influenced the spreading process by tuning the surface tension of the ethanol solution and the viscoelasticity of the gelated film, as suggested by our theoretical model. This work provided kinetic insights into the Marangoni phenomena of viscous polymer solutions. The strategy and principle should be applicable to other systems on preparing thin supramolecular gel films with versatile functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app