Add like
Add dislike
Add to saved papers

Sweet Confinement: Glucose and Carbohydrate Osmolytes in Reverse Micelles.

The research presented here reports the surprising observation that adding glucose and other carbohydrate osmolytes to the polar phase of water-containing reverse micelles causes the particles to shrink. This apparent change in reverse micelle size is attributed to two factors: an increase in the surface area per surfactant molecule induced by the presence of carbohydrate and changes in the particle shape eccentricity. The studies reported here not only focus on glucose but also explore other carbohydrate osmolytes, specifically ethylene glycol, glycerol, erythritol, xylitol, sorbitol, myo-inositol, and trehalose, in the nanoconfined environments of reverse micelles. Through two-dimensional proton nuclear Overhauser enhancement nuclear magnetic resonance spectroscopy, the osmolytes were determined to reside solvated in the aqueous interior of the reverse micelles. This paper reports the loading limit of carbohydrates into AOT [sodium bis(2-ethylhexyl)sulfosuccinate] reverse micelles, demonstrates the location of the carbohydrates in the reverse micelles, and shows an unexpected effect where the carbohydrates add to the reverse micelle volume without causing an apparent increase in the reverse micelle diameter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app