Add like
Add dislike
Add to saved papers

Ancient Endogenous Pararetroviruses in Oryza Genomes Provide Insights into the Heterogeneity of Viral Gene Macroevolution.

Endogenous viral sequences in eukaryotic genomes, such as those derived from plant pararetroviruses (PRVs), can serve as genomic fossils to study viral macroevolution. Many aspects of viral evolutionary rates are heterogeneous, including substitution rate differences between genes. However, the evolutionary dynamics of this viral gene rate heterogeneity (GRH) have been rarely examined. Characterizing such GRH may help to elucidate viral adaptive evolution. In this study, based on robust phylogenetic analysis, we determined an ancient endogenous PRV group in Oryza genomes in the range of being 2.41-15.00 Myr old. We subsequently used this ancient endogenous PRV group and three younger groups to estimate the GRH of PRVs. Long-term substitution rates for the most conserved gene and a divergent gene were 2.69 × 10-8 to 8.07 × 10-8 and 4.72 × 10-8 to 1.42 × 10-7 substitutions/site/year, respectively. On the basis of a direct comparison, a long-term GRH of 1.83-fold was identified between these two genes, which is unexpectedly low and lower than the short-term GRH (>3.40-fold) of PRVs calculated using published data. The lower long-term GRH of PRVs was due to the slightly faster rate decay of divergent genes than of conserved genes during evolution. To the best of our knowledge, we quantified for the first time the long-term GRH of viral genes using paleovirological analyses, and proposed that the GRH of PRVs might be heterogeneous on time scales (time-dependent GRH). Our findings provide special insights into viral gene macroevolution and should encourage a more detailed examination of the viral GRH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app