Add like
Add dislike
Add to saved papers

CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning.

Briefings in Bioinformatics 2018 September 18
Cell-penetrating peptides (CPPs) have been shown to be a transport vehicle for delivering cargoes into live cells, offering great potential as future therapeutics. It is essential to identify CPPs for better understanding of their functional mechanisms. Machine learning-based methods have recently emerged as a main approach for computational identification of CPPs. However, one of the main challenges and difficulties is to propose an effective feature representation model that sufficiently exploits the inner difference and relevance between CPPs and non-CPPs, in order to improve the predictive performance. In this paper, we have developed CPPred-FL, a powerful bioinformatics tool for fast, accurate and large-scale identification of CPPs. In our predictor, we introduce a new feature representation learning scheme that enables one to learn feature representations from totally 45 well-trained random forest models with multiple feature descriptors from different perspectives, such as compositional information, position-specific information and physicochemical properties, etc. We integrate class and probabilistic information into our feature representations. To improve the feature representation ability, we further remove redundant and irrelevant features by feature space optimization. Benchmarking experiments showed that CPPred-FL, using 19 informative features only, is able to achieve better performance than the state-of-the-art predictors. We anticipate that CPPred-FL will be a powerful tool for large-scale identification of CPPs, facilitating the characterization of their functional mechanisms and accelerating their applications in clinical therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app