Add like
Add dislike
Add to saved papers

Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization.

Bioinformatics 2018 September 16
Motivation: Hypertension is a heterogeneous syndrome in need of improved subtyping using phenotypic and genetic measurements with the goal of identifying subtypes of patients who share similar pathophysiologic mechanisms and may respond more uniformly to targeted treatments. Existing machine learning approaches often face challenges in integrating phenotype and genotype information and presenting to clinicians an interpretable model. We aim to provide informed patient stratification based on phenotype and genotype features.

Results: In this article, we present a Hybrid Non-negative Matrix Factorization (HNMF) method to integrate phenotype and genotype information for patient stratification. HNMF simultaneously approximates the phenotypic and genetic feature matrices using different appropriate loss functions, and generates patient subtypes, phenotypic groups and genetic groups. Unlike previous methods, HNMF approximates phenotypic matrix under Frobenius loss, and genetic matrix under Kullback-Leibler (KL) loss. We propose an alternating projected gradient method to solve the approximation problem. Simulation shows HNMF converges fast and accurately to the true factor matrices. On a real-world clinical dataset, we used the patient factor matrix as features and examined the association of these features with indices of cardiac mechanics. We compared HNMF with six different models using phenotype or genotype features alone, with or without NMF, or using joint NMF with only one type of loss. HNMF significantly outperforms all comparison models. HNMF also reveals intuitive phenotype-genotype interactions that characterize cardiac abnormalities.

Availability: Our code will be made publicly available on github upon publication.

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app