Add like
Add dislike
Add to saved papers

Theoretical investigations on hydrogen peroxide decomposition in aquo.

Hydrogen peroxide (H2O2) decomposition mechanisms in the absence and presence of iron ions in aqueous solution, which contain no OH radical formation, are theoretically determined. Calculating the oxygen-oxygen bond dissociation energies of H2O2, we confirmed that OH radical formation requires spin-forbidden transitions. Instead, we tested an H2O2 dimer-based decomposition mechanism and found that this mechanism provides reasonable barrier heights of 52-62 kcal mol-1, which are close to the experimental activation energy. We next calculated the oxygen-oxygen bond dissociation of H2O2 coordinating to the iron ion hydration complex in order to explore H2O2 decomposition in the presence of iron ions. Surprisingly, we found that a monovalent iron ion complex provides no reaction barrier to dissociate H2O2, in contrast to the ferrous (Fe2+) and ferric (Fe3+) ion complexes with accompanying very high barriers. Following this result, we determined the subsequent oxygen formation mechanism of the monovalent iron ion complex and found that this mechanism needs a hydrogen bond network around H2O2 to proceed at room temperature. We, therefore, conclude that H2O2 decomposition in the presence of iron ions is driven by electron transfer to the iron ion hydration complex and proceeds by hydrogen transfers in the hydrogen bond network around H2O2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app