Add like
Add dislike
Add to saved papers

Structural Effects of Fusicoccin upon Upregulation of 14-3-3-Phospholigand Interaction and Cytotoxic Activity.

Fusicoccins (FCs) exhibit various cellular activities in mammalian cells, but details of the mechanism of action are not fully understood. In this study, we synthesized two pairs of model derivatives of FCs differing only in the presence and absence of a 12-hydroxyl group and evaluated their binding to a 14-3-3 protein together with various mode 1 and mode 3 phosphopeptide ligands. Our results demonstrate that the 12-hydroxyl group hampers binding to 14-3-3 with mode 1 phospholigands, presumably due to steric repulsion with the i+2 residue. Furthermore, cell-based evaluations showed that only non-substituted FCs exhibit significant cytotoxicity and all 12-hydroxyl derivatives were inactive, demonstrating a clear correlation with their ability to form ternary complexes with 14-3-3 and a mode 1 ligand. These results suggest that binding to 14-3-3 and a partner protein(s) possessing a mode 1 sequence plays a role in the mechanism of action of 12-non-substituted FCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app